华宇2登录_简述聚合物锂离子电池技术特点
1聚合物锂离子电池的性能特点
聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据要进行串并联或采用双极结构。
聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。
其工作性能指标如下:工作电压:3.8V;比能量:130Wh/kg,246Wh/L;循环寿命:>300;自放电:<0.1%/月;工作温度:253-328K;充电速度:1h达到80%容量;3h达到100%容量;环境因素:无毒。
2正极材料
锂离子电池的特性和价格都与它的正极材料密切相关,一般而言,正极材料应满足:⑴在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;⑵温和的电极过程动力学;⑶高度可逆性;⑷全锂状态下在空气中稳定性能好。随着锂离子电池的发展,高性能、低成本的正极材料研究工作在不断地进行。目前,研究重要集中于锂钴氧化物、锂镍氧化物和锂锰氧化物等锂的过渡金属氧化物[1](见表1)。
锂钴氧化物(LiCoO2)属于α-NaFeO2型结构,具有二维层状结构,适宜锂离子的脱嵌。由于其制备工艺较为简便、性能稳定、比容量高、循环性能好,目前商品化的锂离子电池大都采用LiCoO2作为正极材料。其合成方法重要有高温固相合成法和低温固相合成法,还有草酸沉淀法、溶胶凝胶法、冷热法、有机混合法等软化学方法。
锂镍氧化物(LiNiO2)为岩盐型结构化合物,具有良好的高温稳定性。由于自放电率低、对电解液的要求低、不污染环境、资源相对丰富且价格适宜,是一种很有希望代替锂钴氧化物的正极材料。目前LiNiO2重要通过Ni(NO3)2、Ni(OH)2、NiCO3、NiOOH和LiOH、LiNO3及LiCO3经固相反应合成。LiNiO2的合成比LiCoO2困难,其重要原因是在高温条件下化学计量比的LiNiO2容易分解为Li1-xNi1+xO2,过量的镍离子处于NiO2平面之间的锂层中,妨碍了锂离子的扩散,将影响材料的电化学活性,同时由于Ni3+比Co3+难得到,因此的合成必须在氧气气氛中进行[2]。
锂锰氧化物是传统正极材料的改性物,目前应用较多的是尖晶石型LixMn2O4,它具有三维隧道结构,更适宜锂离子的脱嵌。锂锰氧化物原料丰富、成本低廉、无污染、耐过充性及热安全性更好,对电池的安全保护装置要求相对较低,被认为是最具有发展潜力的锂离子电池正极材料。Mn溶解、Jahn-Teller效应及电解液的分解被认为是导致锂锰氧化物为正极材料的锂离子电池容量损失的最重要原因。
3固态聚合物电解质
以离子传导电流的固体材料通常被称之为固体电解质,它包括晶体电解质、玻璃电解质和聚合物电解质三种类型,其中固态聚合物电解质(SPE)具有质轻、易成膜、粘弹性好等优点,可用于电池、传感器、电致变色显示器和电容器等方面。将SPE用于锂离子电池,可排除液体电解质易泄漏的问题,取代电池中的隔离膜,抑制电极表面枝晶的出现,降低电解质与电极的反应活性,提高电池的比能量,使电池具有耐压、耐冲击、生产成本低和易于加工等优点。
常规的固态聚合物电解质(SPE)由聚合物与锂盐构成,它是锂盐溶于聚合物而形成的电解质体系。通常分子链上含有能与Li+发生配位用途的氧、氮、硫等极性基团的聚合物可用来形成该类体系,如:聚氧化乙烯(PEO)、聚氧化丙烯、聚氧杂环丁烷、聚乙烯亚胺、聚(N-丙基-1氮杂环丙烷)、聚硫化亚烃等。作为硬酸的Li+倾向于和硬碱发生相互用途,所以锂盐在含氮、硫极性基团的聚合物中的溶解度较在含氧极性基团的聚合物中小,电导率(σ)很低而没有实际的意义;PEO分子的构象比其它聚醚分子更加有利于与阳离子形成多重配位,能溶解更多的锂盐,表现出好的导电性能,因此PEO+锂盐体系就成为SPE中最早和最广泛研究的体系。
但是常规的固态聚合物电解质(SPE)的σ室温通常小于10-4Scm-1,为满足锂离子电池的要求,在聚合物/盐体系中加入能促进锂盐离解、新增体系的自由体积分数并降低其玻璃化转变温度(Tg)的增塑剂,可得到σ室温大于10-3Scm-1的凝胶SPE。增塑剂通常是高介电常数、低挥发性、对聚合物/盐复合物具有可混性和对电极具有稳定性的有机溶剂。如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯、N-甲基吡咯烷酮、环丁砜、γ-丁内酯等。常用的锂盐有LiPF6、LiN(SO2CF3)等。
运用XRD、DSC和交流阻抗等测试手段,对影响聚合物电导率的因素作了初步探讨。
⑴锂盐浓度对电导率的影响
当锂盐的浓度较低时,聚合物电解质的电导率是比较低的,仅为10-8数量级。在锂盐浓度逐渐增大的过程中,由于载流离子浓度的增大,电导率也随之增大;而当盐的浓度继续增大时,高的离子浓度导致了离子间的相互用途力增强,使载流离子的淌度减小,致使电导率下降。
⑵增塑剂浓度与Tg的关系
随着增塑剂的新增,聚合物电解质的玻璃化转变温度逐渐减小,加快了聚合物电解质在室温时的链段运动,因此它的导电能力也随着增大。虽然增塑剂浓度的新增,大大提高了聚合物电解质的电导率,但同时也降低了聚合物电解质膜的自支成膜性和机械强度。若将预聚物、增塑剂和锂盐共混,利用光或热引发聚合反应,通过化学键形成具有网状结构的凝胶SPE,这样得到的SPE不仅具有良好机械性能,而且抑制了聚合物结晶,提高了SPE中增塑剂的含量,可以获得高σ的SPE。
4负极材料
锂离子电池的容量在很大程度上取决于负极的锂嵌入量,其负极材料应满足如下要求:⑴锂的脱嵌过程中电极电位变化较小,并接近金属锂;⑵有较高的比容量;⑶较高的充放电效率;⑷在电极材料的内部和表面Li+均具有较高的扩散速率;⑸较高的结构、化学和热稳定性;⑹价格低廉,制备容易。目前有关锂离子电池负极材料的研究工作重要集中在碳材料和具有特殊结构的其它金属氧化物。
一般制备负极材料的方法如下:①在一定高温下加热软碳得到高度石墨化的碳;②将具有特殊结构的交联树脂在高温下分解得到硬碳;③高温热分解有机物和高聚物制备含氢碳。
碳负极材料要克服的困难就是容量循环衰减的问题,即由于固体电解质相界面膜(Solidelectrolyteinterphase,简称SEI)的形成造成不可逆容量损失。因此制备高纯度和规整的微结构碳负极材料是发展的一个方向。