华宇平台登陆_杨红新:叠片工艺+无钴技术是动力锂电池未来趋势
八月11-十三日,以冬芽为主题的第12届我国汽车蓝皮书论坛在武汉举办。为期3天的会议期间,众多重量级汽车行业人士围绕着23个讨论议题进行演讲和对话。
现场,蜂巢能源总裁杨红新对动力锂电池格局和未来技术发展路线进行了分析。他表示,叠片工艺和低钴和无钴已经成为了电池发展的趋势。
在他看来,钴的储量小且集中,只有710万吨并把控有限的几家制造生产,特别容易控。钴这个问题不消除,不符合未来电动汽车发展的趋势。
同时无钴内阻偏高,假如把叠片技术用上,可以再降低它5%的内阻,所以叠片加无钴这两种技术的结合,既可以发挥无钴的优势,又能解决无钴的痛点。
低温高能量密度18650 3500mAh 比能量252Wh/kg,-40℃放电容量≥70%
充电温度:0~45℃
-放电温度:-40~+55℃
-40℃支持最大放电倍率:1C
-40℃ 0.5放电容量保持率≥70%
点击详情
叠片和无钴,一个是工艺制造角度,一个是材料成本和安全性角度,这是基础性的未来趋势,可以满足对成本,对效率、对功率、对寿命各方面的要求。明年六月份,蜂巢能源将会把无钴电芯推向市场,并进行装车销售。
最后他指出,电池公司和整车公司关于电池机理的了解仍然比较肤浅。电芯到底为何突然会自燃?为何会突然热失控?机理是什么?我们现在都没有办法完全弄清楚。
以下为演讲部分实录:
大家下午好,我是蜂巢能源的杨红新,其实上一场殷总主持得特别好,成功让充电和换电两组人怼起来,我是特别想参和上一场的讨论。因为我原来是在整车厂工作了十几年,近几年是在电池厂工作,所以我也有我的一些想法。
不管是充电还是换电,前提都是车电分离是最重要的,只要车电分离做到了,其实对电池公司都是最大的受益者。因为车电分离以后,消费者购车成本降低了,电动汽车卖得多了,要建换电站,除了车上的电池,换电站也要储备很多的电池,所以对电池公司是一个利好。
无磁低温18650 2200mAh -40℃ 0.5C放电容量≥70%
充电温度:0~45℃
放电温度:-40~+55℃
-40℃最大放电倍率:1C
-40℃放电容量保持率:0.5C放电容量≥70%
点击详情
另外一点,刚才提到的标准化问题。我们电池公司也特别关注电动汽车电池的标准化,这个事情短时间肯定很难实现,但是长期看是有机会实现的,取决于电池的体积能量密度到底做到什么样的水平。
接下来我参和的主题是动力锂电池格局和技术路线的演化。
刚才提到的电池标准化,其实就是未来一个非常重要的技术路线的演化趋势。大家了解12V的铅酸电池,基本都已经通用化,不管是大众、奥迪还是国产车,都可以用同样的12V铅酸电池。
但是锂电池太大了,它严重地挤压了整车的轴距、轮距和高度,所以很难做到标准化。假如体积能量密度提高一倍,我们把整个电池包的宽度缩短一半,把它集中在车辆的中通道的位置,这个时候是可以做到标准化的。靠什么来实现?肯定是靠从化学体系到结构设计不断的创新来实现的。
今天,我们想说的是动力锂电池未来的格局,核心的路线到底是什么?其实走什么技术路线,取决于客户的需求是什么,取决于整车厂的需求是什么。
客户跟整车厂到底要什么呢?大家在新闻上经常听到自燃问题,所以安全肯定要,大家说一次购车成本高,所以成本很重要。大家说现在电池太重,体积太大,所以能量密度也很重要。还有循环寿命,有人想用20年,寿命很重要,有人想快充,功率也很重要,放电功率也很重要,这些都是客户和整车公司的需求。
那我们做哪一点,不做哪一点,整车厂来说都想要,但是对电池厂来说很难,因为这里面很多指标是相矛盾的。
我们不可能在今天,把安全、寿命、功率每一个拎出来单说。未来的趋势会变成什么样?我是希望站在最基础的角度做一些分析,什么基础技术可以同时实现多个未来客户跟整车厂的需求,尽量满足多样化的需求。
那么我选择的主题是叠片跟无钴,也是有它的原因的,刚才讲充电的时候也提到了一个,现在电动汽车的销售对象,重要还是B端的多,今年开始C端的多了,什么时候电动汽车开始真正的普及?
一定是大量私家车主成为购车主力,占到90%以上,就像现在的燃油车相同。那么什么时候才能够实现,以及要做什么工作?成本是非常大的一个障碍,也是非常关键的一个诉求。
这里面有一个测算公式,是成本回收期的计算,我们把它分成A00、A0、A、B、C不同级别的车,不同级别的车电池价格是不相同的。
不同电池的价格,从纵坐标来看,成本回收期也是不相同的,这里面考虑了很多价差和用车成本的因素在里面。那么市场上将来最主流的电动汽车,其实应该和燃油车相同,是A级车应该占到绝大部分的市场销量,是最主流的车型。
我们看A级车,实现跟燃油车对等,以及满足客户期望的成本回收期,经过测算是3.4年。什么时候能够实现,保守的测算是2025年。2025年电池的成本可以支持A级主流家用车,在3.4年之内,跟燃油车比较回收回来,就可以达到一个大规模普及程度,这是一个比较新的维度的思考。它不仅仅单纯的考虑是初始构成成本,考虑了非常多的因素。
成本既然这么关键,影响到我们什么时候实现电动汽车的普及,我们希望2023年更早的普及才好,这样我们的电池还可以多卖一些。
那么怎么降成本?我们回顾历史,其实各方面都在降,材料在降,设备价格在降,制造成本在降,设计工艺出现的结构性的成本也在降,都在降。
但是,其实这里面有很多数据,降幅最大的还是四大主材,四大主材类里降幅最大的还是正极,降幅是非常高的。
我们说生产效率,一次成本投入非常大,建一个电池厂的投资比建一个汽车厂还要大。但是假如分摊到5年折旧,10年折旧里面,再分摊到每瓦时的电芯成本里面,设备占成本比是比较低的,几分钱,但是材料占比是最大的,影响也是最大的。
所以我们的关注焦点,还是要放在主材上。当然技术进步,我们CTP的技术,以及我们长电芯的开发,进一步提高密度,都可以进一步降低成本。
CTP最近比较火,但是我认为它更重要的用途是可以提高安全性。因为我把模组的端板、侧板取消以后,可以释放出大量的空间,这些空间可以用于增大电芯的间隙,就有机会实现一个电芯热失控,相邻电芯不出现热失控这样的一个目标,这样的目标实际上已经成为国际跟国内的最重要的目标。
所以CTP不仅可以降成本,还可以提高我们的安全性。这也是汽车行业,电池行业在积极努力创新的地方。
我们提到正极材料,就不得不提到对正极材影响最大的是什么。现在除了磷酸铁锂以外,最大的材料供应体系还是三元锂电池,如镍钴锰、镍钴锂,当然镍占比很高,811电池中镍占80%左右的,但是镍在全球的金属比例当中,用在锂电池上占比是小的。
钴是不相同的,手机用的是钴酸锂,用钴量非常大,所以钴对正离子材料成本影响是非常大的。
我做过锂电池很多年,下面坐着做电池的前辈,大家可能都了解,2008和2018年,10年中出现了两次钴价的剧烈波动,从10元左右涨到40多元,还买不到。
假如电动汽车将来要做到一年一千万辆,一年两千万辆,这种大工业持续制造的商品,是不允许出现这样的供应链问题的。汽车公司讲供应链安全,它是绝对不允许出现的。这种情况是严重的会制约电动汽车的普及的。
那么这张图是我们公司画的,其实整个行业也差不多。这张图有一个特点,越向上的能量密度越高。另外一个特点是,不管是铁锂、无钴、磷酸铁锂、四元、三元、固态,在能量密度提高的同时,钴的含量都在想办法向下降。从最早的111到523,到6系7系8系,现在NCMA和NCL做到9系的,镍的含量一直在上升,钴的含量一直在下降,人类在追求去钴化和无钴化上的努力,一直在做各种各样的功课,从来没有停止过。
在能量密度提升的同时,它的价值是巨大的,它可以释放大量的车内空间。我们了解有的电动汽车为了把电池塞进去,坐到后排以后,就像坐小板凳相同,腿是非常难受的,躯干角非常不合理。
假如我们能量密度提高了,电池可以做矮做窄,又可以实现标准化,这绝对是未来永远追求和努力的方向,就是提高能量密度。
但是路线确实不相同,也会分场景进行应用。磷酸铁锂有它的场景,无钴有它的场景,811有它的场景,场景不同,但是在去钴这条路上是相同的。我这里面写的无钴指的是高能量密度电池的无钴,磷酸铁锂也没有钴,但是它是低能量密度电池的无钴,我们后面说的无钴电池都是指的高能量密度的。
那么前面讲到的是材料,我们再讲讲工艺,工艺现在软包锂电池公司都是叠片的,其他的大部分都是卷绕的,其实各有优劣势,不是谁对谁错,但是我们还是要看未来,未来客户到底要什么。
回到刚开始说到的话题,客户要的是长寿命的,客户要的是越小越好的,客户要的是功率性特别好的。就是所有不合理的要求,合理的要求,他都要你满足。
那么卷绕工艺,在经历这么多年的发展之后,遇到了很大的瓶颈,叠片工艺先天上有很大的优势。比如能量密度的提升,比如稳定性,比如说极耳数量多一倍,工艺性更好,所以叠片工艺是非常有前途的。
尤其是当我们把电池的尺寸越做越大的时候,我们了解最早VDA,后来是590模组电芯,220的,现在比亚迪出的刀片是更长的,574这个尺寸,它和590标准模组可以兼容,这个电芯既可以用无模组在电池包里布置,又可以把它装到590模组里,兼容性非常好。
但是电芯做得越长,其实能量密度越高,成本越低,因为叠片,每叠一个小的片进去,和每叠一个大的片进去,叠的活性物质的量是不相同的,所以越大,生产量量的效率就越高。
同时,越薄的电芯,散热性更好,做针刺的话,容易通过。那么叠片是最适合电池的工艺的。
当然还有极耳数量新增了一倍,它的内阻可以新增10%,功率也可以得到提升。还有能量密度,空隙都可以填满,还有界面是非常良好的,卷绕不会出现左边的S变形,包括边缘位置的断裂出现的纹路,所以从安全性能上来讲,叠片也是非常好的。
另外就是膨胀,它初始膨胀力和中器后期膨胀率率卷绕的,所以对模组的压力也会更小,也会提高安全性。
叠片和无钴,一个是工艺制造角度,一个是材料成本和安全性角度,是基础性的未来趋势,可以满足对成本,对效率、对功率、对寿命各方面的要求。
钴这个产品,确实是非常非常重要的,每年都有人会苹果公司,会TSLA,说他们使用的钴来源不干净,这也成为整个行业非常痛的和不可回避的问题。
钴的储量这幺小,只有710万吨,而且还特别集中,只有几家公司可以制造生产,特别容易控。电动汽车单车用量又非常大,ModelS已经用了9系高镍电池了,但是单车用量还要消耗掉13.68公斤的钴,所以钴这个问题不消除,肯定是不符合未来电动汽车发展的趋势。
大家都了解要去掉钴,或者把钴减少,但是技术的挑战确实是非常多的。其实没有钴的,高能量密度的电池的理论,在20年前日本的学者就提出来过,但是这么多年来,要不就是大家投入精力少,要么就是技术没有做得很好,没有解决锂镍混排的问题。假如8%-10%锂镍混排不能解决的话,产品稳定性、倍率性都是非常差的。
解决方法有很多种,经过很长时间的摸索,包括我们也做了很多年的摸索,从新增镍的含量,包括一些技术等等,来提高它的稳定性。总体来讲就是提高阳离子模式掺杂、单晶,太专业的就不在这里讲了。
从测试数据来看,新鲜的电池,就是刚刚生产的电池的镍混排可以控制在3.5%左右,是非常低的。
那么循环到后期的电池,锂镍混排控制在小于5%以内,是很好的解决了前面提到的锂镍混排的问题,同时金属溶出这个问题,也是无钴电池必须要解决的。
从右边的这个图上来看,跟811比较,我们的镍、锰的溶出率都小于811的材料,所以循环寿命和稳定性都是非常好的。而且我们做了2吨电池的测试,已经量化了。
从产品上来看,无钴材料、无钴电池一定要是高能量密度的才可以,假如能量密度过低就是磷酸铁锂,没有价值了。它的能量密度一定要接近811的水平,同时是安全的,比7系的三元更安全,循环寿命好,成本还要低。
还是回到刚开始说的,客户什么都想要,我们就做一个什么都能满足他的要求的产品。从实际数据来看,这些目标都已经满足了。
这是我们的动力性的测试,唯一一个还有问题,就是第一张图,20%的SOC下,就是DSOC下的功率性能是偏弱的,因为没有钴以后,它的内阻在低温下会偏高。
我们也在做解决方法,在测试。其他的功率性能都是挺好的,包括零下30摄氏度的低温性能,还可以支持70%的续航,包括零下20摄氏度的低温充电,界面保持得非常好。
还有高温循环寿命,可以超过1200次,常温循环寿命1C1C,我们100%可以超过2500次,811只能做到1500次。
针刺我们做的不是刺穿的,是按照欧洲客户要求做的浅刺,欧洲客户要求,刺穿三层电极,只要不起火,不爆炸就算可以,我们刺穿了六层,右边的图片来看都是非常好的。
还有150度的热箱,高能性能也是高镍材料最害怕的,我们也顺利的通过了150度热箱的测试,还有140%的SOP的过充,还有外部短路,包括一些其他的测试数据。
以上讲的是无钴材料的进展,大家都说无钴材料这么难,真的可以量产吗?现在可以负责任地告诉大家,肯定可以,明年六月份我们就会把无钴的电芯推向市场,装车,装到车上销售。
那么无钴还有一个问题,就是它的内阻是偏高的,假如把叠片技术用上,可以再降低它5%的内阻,所以叠片加无钴,这两种技术的结合,既可以发挥无钴的优势,又能解决无钴的痛点。
那么我们在把它做成长电芯,做成薄电芯,L6的长电芯,大概将近600毫米长,做成右边的无模组的LCTP的Pack,我们叫矩阵式Pack,一个电池包里放两台电芯,没有模组。它的能量密度,比传统的设计提高了9%,空间利用率提高了17%,电量提升了24%。
长城一款采用这种布置形式,无钴、无模组的电池可以做到880公里续航,同时也可以做成有模组的,就是装到MED590的模组也可以,兼容性非常好。
以上就是我有关对未来电池技术路线的一些分享,不管怎么样,安全、寿命、能量密度各方面的追求,都是没有止境的。
现在我们电池公司,整车公司,关于电池机理的了解还是非常肤浅的,电芯到底为何突然会自燃?为何会突然热失控?机理是什么?我们现在都没有办法完全弄清楚,
当然我们有比较初步的认识,但是还没有做到研究透,假如真的研究透了,缺陷就可以防止掉。
所以我们现在也在做一些研究工作,就是在极低的温度下,零下160摄氏度,用液氮冷冻热失控的步骤,在电芯刚刚出现内短路和出现的初期和后期,把它冻住,然后瞬间把它静止,看它的界面,看它的机理等等,这只是其中的一个研究。
目前我们对电芯这个行业的研究,还要不断地努力和提升。未来的方向,我们希望通过蜂巢能源,通过孚能、力神,我们共同努力,把满足客户的动力锂电池的技术,不断推向前进,不断满足客户的需求,我的分享就到这里。谢谢大家!