华宇可信吗?_成熟动力锂电池管理系统应具备什么功能?
综合各国的电动汽车研究情况,可以发现共同存在的一个现象,即电池是整个电动汽车研究中出问题最多的部件。在电池生产的过程中,电池必须要经过化成检测工序,即在电池生产过程中要对电池进行多次充放电才能完成整个电池的生产。
所以化成控制系统的性能直接影响着锂离子电池的技术状态、使用寿命,并决定着放电时对电网的污染程度。为了满足电动汽车的实际运行需求,电池管理系统在功能、可靠性、实用性、安全性等方面都做出了重要努力。温州三和顺汽车电子,WZ3HEDC-DCPowerSupplyConverters立足于车载直流电源零配件领域;秉乘着三人成行,和顺有成的经营理念,力求于做到和是态度,是为人处世的中和哲学;和是能力是赢,是多赢,是持续的赢。现有车载隔离电源,升压稳压电源,车载降压转换器三大产品系列,上百种产品规格,欢迎新老客户来电来涵洽谈!何顺庆
电池管理系统简介:
电池管理系统(BatteryManagementSystem,BMS),电动汽车电池管理系统(BMS)是连接车载动力锂电池和电动汽车的重要纽带,其重要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
电池管理系统的应用:
电池管理系统(BatteryManagementSystem,BMS)的重要任务是保证电池系统的设计性能:
1)安全性,保护电池单体或电池组免受损坏,防止出现安全事故;
2)耐久性,使电池工作在可靠的安全区域内,延长电池的使用寿命;
3)动力性,维持电池工作在满足车辆要求的状态下。
动力锂电池的基本概念:
(1)电池容量
池容量是蓄电池的一个重要性能参数,它表示在一定放电率、温度、终止电压等的条件下,电池放出的电量。
电池容量用C表示,其单位用安时(Ah)、毫安时(mAh)表示。
(2)充电速率和放电速率
此概念利用电池额定容量和充电时间(放电时间)的比值来表示,可以比较不同电池的充放电速度。
(3)电池的过充
电池的过充即是对电池进行了过度的充电,过充会给电池造成一定的损害。当快接近充电结束的过程时,即电池电量快满的时候,只能用小电流对电池进行低速率充电。因为只有小电流充电所出现的极化现象较轻,在电池内部积聚的气体较少,而且给电池散热的时间充足。
(4)充电终止电压/放电终止电压
当蓄电池充满电时,表示电池极板上的活性物质已经达到饱和状态,所以在这个时候即使继续对蓄电池充电,蓄电池的电压再也不会升高,此时蓄电池的电压称为充电终止电压。类似地,放电终止电压就是放电时候能达到的最低电压。
(5)电池的内阻
蓄电池两端测得的阻值称为蓄电池的内阻。
(6)电池的生命周期及老化
电池的整个生命周期会经历以下三个阶段:在刚开始使用阶段时,容量会增大5%~10%;接下来的阶段,容量保持不变;最后一个阶段,电池容量开始慢慢减少。这段容量减少的阶段就是电池的老化阶段。一般来说,当电池容量降到额定容量的80%时,则认为电池寿命结束。
电池管理系统的重要组成及功能:
(1)电池终端模块(重要进行数据采集,如:电压参数、电流参数、温度、通信信号等);
(2)中间控制模块(重要与整车系统进行通讯,控制充电机等);
(3)显示模块(重要进行数据呈现,实现人机交互)。
为满足相关的标准或规范,BMS的这些组成模块要完成的如下工作:
(1)电池参数检测。包括总电压、总电流、单体电池电压检测(防止出现过充、过放甚至反极现象)、温度检测(最好每串电池、关键电缆接头等均有温度传感器)、烟雾探测(监测电解液泄漏)、绝缘检测(监测漏电)、碰撞检测等;
(2)电池状态估计。包括荷电状态(SOC)或放电深度(DOD)、健康状态(SOH)、功能状态(SOF)、能量状态(SOE)、故障及安全状态(SOS)等;
(3)在线故障诊断。包括故障检测、故障类型判断、故障定位、故障信息输出等。故障检测是指通过采集到的传感器信号,采用诊断算法诊断故障类型,并进行早期预警。
电池故障是指电池组、高压电回路、热管理等各个子系统的传感器故障、执行器故障(如接触器、风扇、泵、加热器等),以及网络故障、各种控制器软硬件故障等。电池组本身故障是指过压(过充)、欠压(过放)、过电流、超高温、内短路故障、接头松动、电解液泄漏、绝缘降低等;
(4)电池安全控制与报警。包括热系统控制、高压电安全控制。BMS诊断到故障后,通过网络通知整车控制器,并要求整车控制器进行有效处理(超过一定阈值时BMS也可以切断主回路电源),以防止高温、低温、过充、过放、过流、漏电等对电池和人身的损害;
(5)充电控制。BMS中具有一个充电管理模块,它能够根据电池的特性、温度高低以及充电机的功率等级,控制充电机给电池进行安全充电;
(6)电池均衡。不一致性的存在使得电池组的容量小于组中最小单体的容量。电池均衡是根据单体电池信息,采用主动或被动、耗散或非耗散等均衡方式,尽可能使电池组容量接近于最小单体的容量;
(7)热管理。根据电池组内温度分布信息及充放电需求,决定主动加热/散热的强度,使得电池尽可能工作在最适合的温度,充分发挥电池的性能;
(8)网络通讯。BMS要与整车控制器等网络节点通信;同时,BMS在车辆上拆卸不方便,要在不拆壳的情况下进行在线标定、监控、升级维护等,一般的车载网络均采用CAN;
(9)信息存储。用于存储关键数据,如SOC、SOH、SOF、SOE、累积充放电Ah数、故障码和一致性等;
(10)电磁兼容。由于电动汽车使用环境恶劣,要求BMS具有好的抗电磁干扰能力,同时要求BMS对外辐射小。储能电池管理系统,与动力锂电池管理系统非常类似。但动力锂电池系统处于高速运动的电动汽车上,对电池的功率响应速度和功率特性、SOC估算精度、状态参数计算数量,都有更高的要求。
储能系统规模极大,集中式电池管理系统与储能电池管理系统差异明显,这里只拿动力锂电池分布式电池管理系统与其比较。
2.1电池及其管理系统在各自系统里的位置有所不同。
在储能系统中,储能电池在高压上只与储能变流器发生交互,变流器从交流电网取电,给电池组充电;或者电池组给变流器供电,电能通过变流器转换成交流发送到交流电网上去。
储能系统的通讯,电池管理系统重要与变流器和储能电站调度系统有信息交互关系。一方面,电池管理系统给变流器发送重要状态信息,确定高压电力交互情况;另一方面,电池管理系统给储能电站的调度系统PCS发送最全面的监测信息。